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Discretized integral hydrodynamics
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Using an interpolant form for the gradient of a function of position, we write an integral version of the
conservation equations for a fluid. In the appropriate limit, these become the usual conservation laws of mass,
momentum, and energy. We also discuss the special cases of the Navier-Stokes equations for viscous flow and
the Fourier law for thermal conduction in the presence of hydrodynamic fluctuations. By means of a discreti-
zation procedure, we show how the integral equations can give rise to the so-called “particle dynamics” of
smoothed particle hydrodynamics and dissipative particle dynaf8d¢€63-651X98)04808-9

PACS numbsd(s): 03.40.Gc, 82.70:y, 02.70—-c

I. INTRODUCTION representation of a function in terms of a weight function.
This function, in the appropriate limit, become# &unction,

The inherent difficulties of the equations of hydrodynam-and the interpolant yields an identity. For calculational pur-
ics have given rise, over the years, to a variety of schemegoses one does not take such a limit and, therefore, one ends
that numerically simulate fluid flows. These methods rangeaip with an approximate form of the corresponding function.
from the very fast but highly idealized lattice-automata flowsThe SPH simulations are based on certain forms of the inter-
[1] to the slow but microscopically rigorous molecular dy- polant of the hydrodynamiéunctions such as density, ve-
namics simulation$2], passing through schemes that deallocity, etc. Here we base our scheme not on the interpolants
with hydrodynamic fluctuations based on variations of theof the functions, but rather on the interpolants of ¢hadient
Boltzmann equatio3]. These simulation techniques have of the functions. This minor change proves to be very useful
proved to be very useful in some particular cases, and havie writing integral equations that reduce, exactly, to conser-
yielded not only a better understanding of fluid dynamics butvation laws in the limit. Moreover, we shall see that the
have also shown the value and potentiality of their corre-conservation of mass, momentum, and energy is exactly pre-
sponding approaches. An aspect common to all those metiserved at the level of the integral forms. At an approximate
ods is thedirect interpretation, and implementation, of flows level, we shall show that the integral forms of the conserving
in terms of the dynamics of the actyadrticlesthat conform  currents are correct up to second order terms in the gradients
the fluid at a microscopic or mesoscopic scale. Of renewedf the corresponding fields. Since the integral expressions
interest, and the subject of the present paper, there have apan be written down following the forms of the true laws,
peared novel simulation schemes based on the idea of suphenomenological variables, such as viscosities and thermal
stituting themacroscopidluid by “particles” that represent conductivity, can be naturally included. In the same fashion,
the flow at a coarse-grained spatial scale. These particldhe extension to fluctuating hydrodynamics can be readily
move under the influence of effective forces and their equaperformed.
tions of motion reduce, in the appropriate coarse-grained The resulting integral conservation laws may then be used
limit, to some approximate form of the hydrodynamic as an alternative to the exact differential laws. Further, they
Navier-Stokes equations. Those methods are calledan be utilized as the starting point for approximate solu-
smoothed particle hydrodynami¢SPH [4,5] (also known tions. In this context, we show that by an appropriate dis-
as smoothed particle applied mecharfiéh and dissipative cretization of the integrals one can render the equations to
particle dynamicg¢DPD) [7]. Although numerical implemen- look like the equations, not for the hydrodynamic fields
tations of these techniques are somewhat different, the lattevaluated at space-time points, but rather for quantities per-
including a random force, we shall argue here that their oritaining to particles For instance, the field velocity(r,t)
gin is essentially the same. The use of these particlelikbecomes the velocity;(t) of a particle at positiorr;(t); a
simulations has been reported to be successful in differew of motion for the latter must then be supplied. Within the
applications of fluid dynamids$,8—13. An attractive feature present theory one readily finds equations of motion for the
of these simulations is that one can use the enormous expparticles that are fully consistent with the hydrodynamic
rience gained from techniques of simulations of standarégquations. We shall show how the SPH and DPD equations
molecular dynamics; in particular, they appear to be potenmay then be found. As we shall see, in general, one can have
tially useful in dealing with rheological fluids. additional terms arising from the convective nonlinear terms

In this paper, we present an integral representation of thef the hydrodynamic time derivative.
hydrodynamic conservation laws based on the concept of the We organize the paper as follows. In Sec. Il, we introduce
interpolant of a functiori4,5]; the interpolant is an integral the interpolant of the gradient of a function. With such an

object, we write down the conservation laws, both in general

and for the cases of Navier-Stokes and Fourier laws. The

*Permanent address: Instituto desiEa, UNAM, Apartado Postal extension to fluctuating hydrodynamics is also shown. In
20-364, 01000 Mxico, Distrito Federal, Mexico. Sec. lll, we present a discretization procedure that yields a
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particlelike simulation algorithm. We discuss the relationship
with the SPH and DPD theories. We conclude and make I(A(r))=aaA(r)j dr d,A(T)
additional remarks in Sec. IV.

fd ’—W(|r [iro)+-+, (5)

Il. HYDRODYNAMICS IN INTEGRAL FORM

A. An interpolant of the gradient whered,=dlar,, with r , the Cartesian components of the
vectorr. Due to the spherical symmetry &¥, all the odd

The idea of formulating an integral version of the laws of owers ofr’ (even powers in the derivativesanish identi-

hydrodynamics is based on a limiting representation of th ally. With the use of Eq(2) the first integral on the right-

gradient of a function of position. This representation we hand side of Eq(5) gives the Kronecker del indepen-
call aPinterlpoIant following Lucy [4(]j and Monaghari5] A dently of r, v(\q/hllegthe second integral y%gs,é(a BE;
SPH formulations. As we mentioned in Sec. |, we use the ! “
interpolant of the gradient of a function rather than that of | OayOpyT Oa 5137))/,\1}3/15 Clearly the higher order terms
the function itself. are proportional ta3" times odd (h+1) derivatives ofA.

First, we show that the following identity is correct: We write, generically,

—r) I(A(r))=VA(r)+O(ravA). (6)

W(Jr—=r’[;ro), (1)

[r=r’| In the limit ry— 0, the interpolant is the gradient éf For
approximation purposes, we note from E6) that the cor-

. . . rection to the gradient is third order in the derivatives.
where the tensorial character &fis left unspecified, and g

W(|r—r'|;ro) is a distribution or weight function sharply
peaked with widthr ;. We demand that all its moments exist,
although the function itself may not be integrable. We as- The study of the hydrodynamics of a fluid is based on the
sume that conservation laws for mass, momentum, and engt@y. In
the following we assume that all the fields are evaluated at a
spatial pointr, and that all are time dependent as well. The

VA(r)=—lim fdr A(r’ )

I'OHO

B. Conservation laws

f dr|r[PW(r o) =11 A, @ conservation laws are
ap
— =V (o), @
with n=1. Forn=1 we requireM,;=3, but forn>1 we
leave M,, unspecified. These requirements are easily satis- dj . -
fied by noticing that the integrand of E(L) can be related to 5=~V (v+P1-ID), 8)
the gradient of a distribution that tends to &function,
namely, Je _
Ez—V-[eV+(P~1—H)-v+J], 9)
r
mW(|F|;Fo) =—Vif(rl[;ro) (3 wherep is the mass density, is the velocity of the fluidj is

the momentum density= pv, P is the hydrostatic pressure,

I1 is the viscous stress tens@s= pV2/2+u is the total en-
wheref(r;ro) is such that the limit ,—0 becomes ergy density withu the internal energy density of the fluid,
andJ is the heat current. Integration over the whole volume
of the fluid shows that the total mass, momentum, and en-
1 ergy of the fluid are conserved.
lim f(riro)=7—>0(r). (4) With the use of the interpolant given by E@), we can
fo0 write down analogous conservation expressiongh im-
plicit time dependenge

Clearly, any distribution that tends #(x) can be used. It is

important to stress thaw/ is a function of the magnitudi| fd "W(|r—r'|;ro) (r= “Lp(r v, (r)
and not of the corresponding vector. This dependence is im- | |
portant for the use of approximations and, as we shall see +p(No ()] (10)

below, for the setting up of the conservation laws.

For the validity of Eq.(1) we further require thaf\(r) is (r—
analytic everywhere inside the domain of the integral. This is fdr W(|r=r'|;ro) {[JB(I’ v ,(r)
not a stringent requirement, since we are interested in hydro- r=r |
;jirysr;arr:;ckgealldihgnalhng (A(r)) thellntegrall in Eq(1), we Fi (N0 (1) HIP(ET )+ P(1751) 180

ge of variables,—r+r’, and then we
perform a Taylor expansion &(r+r') aroundr. We obtain —[Ip(rir" )+ 5(r" 1)1}, (11
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ae(r) (r=r'), hence we need the symmetrization in the conservation equa-
P =f dr'W([r—r'[;ro) W{[G(r')va(f) tions(10)—(12) above. Substitution of this form into, say, Eq.
(11), gives, to lowest order, the term
+e(Nv (1) ]+[P(rr)uva(r)+P(r;rv,(r')]
’ ! ’ (r_r,) !

—[MMap(rsr v g(r) + M g(r' ;v g(r")] f dr'[P(r;r")+P(r';n)] |r_—r,|W(|r—r iro)
F[Ja(rir" ) +3a(r 01 12 (14

The above expressions, by the rule of the interpolant, are P IP

equal(in the limit r,—0) to (minus the divergence of the = —<$) P—(ﬁ VT, (15

terms in square brackets evaluated’at r; in particular, the

“kernels” P(r;r'), TI(r;r’) and J(r;r') must be chosen Wwhere the right-hand side is evaluatedratr. The right-

such that the interpolants equal the divergence of the actudland side is— VP(r).

pressure, viscous stress tensor, and heat current when  Regarding the viscous stress tenfbr we use the usual

=r. But before we discuss how to choose these kernels wene that gives rise to the Navier-Stokes equations, linear in

point out that all terms inside the square bracketssgya-  the velocity gradients. The corresponding kernel may be

metric with respect to the interchange of the variableend  \yritten as

r’. Therefore, integration with respect tamakes the right-

hand side of all the equations vanish, thus yielding the con-

servation of the extensive variables, independently off]_,(r:r’)=— (r)f dr"W(|r’ —r"
.. . apB\ls n

whether the limitr,— 0 is taken or not.

(r'=r"eq
Wvﬁ(r”)

iro){

(r/_r/r)ﬁ

C. Constitutive relations - =
|r r__ r//|

2 ('-r,
va(r")— §5aﬁmvv(r”)}
The conservation laws must be provided with constitutive
relations in order to have a closed set of equations. For dis-
cussion purposes we shall choose the mass density, velocity, —g(r)f dr"W(|r"=r"|;ro)
and temperaturé(r,t) as the independent fields. Therefore,
for the pressure and the internal energy we need to know the
equations of state of the fluid in terms pfand T; in par-
ticular, we assume we know the functional dependence
P(p,T). Thus the kernel for the pressure may be chosen asvhere the viscositieg(r) and{(r) are either given functions
of r or they depend om through a further dependence on
P(r:r')=P(p(r),T(r")). (13)  density and temperature. Substitution of this equation into
Eq. (1) yields, to lowest order, the familiar viscosity terms
Clearly, the kernel is not symmetric in its variables, andof the Navier-Stokes equations:

(=,

X 5aﬁmvy(f )| (16)

’ ! ’. (r_r’)ﬁ -
_f dr'[ILp(r;r") + 1 ,p(r ,f)]'lr_—r,W(“—r HeY)

2
n(r)<8avg(r)+r95va(r)— §5a5&yvy(r)) TL(r)8apd,v,(1) ] a7

_ﬁﬁ

For the form of heat current we consider Fourier law in (r—r")
which the current is linear in the temperature gradient. The f dr'[Jq(r;r")+3q(r";r)]- WW(“—WJ%)
kernel can be written as

=V [k(r)VT(r)], (19

(r'—1") where ther dependence ok may be given through its de-
ST — " T — " pendence on temperature and density.
i )_K(r)f dr"W([r’ = r"|iro) [r' —r"| . Thus we have shown a consistent way of presenting an
(18 integral form of the equations of hydrodynamics, such that,
in the appropriate limit, they yield the true equations; we
note that all the phenomenological coefficients are readily
Again, substitution into Eq(12) yields, to lowest order, and unambiguously identified. This is an important point
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since, as we shall show in Sec. Il D, the choice of the func- 55p(r) (r—=r’)

. . p ’ . !

tional forms of the stress tensor and the heat current is by no —— =~ dr'W(|r—r'[;rq) = [po(r")ov(r)

means unique; that is, we can prescribe different functional

forms that in the limit also give similar expressions to the + 8p(r" Wo(r)+ po(r)Sv(r’) + 8p(r)vo(r')]

usual hydrodynamic laws. We shall defer further discussion

of this point to Sec. IIl. (21)
D. Hydrodynamic fluctuations and similar linear equations for thpartia) time derivatives

) ) of momentum density and energy,and de. Next one iden-

We now turn our attention to the formulation of the study ifies the source of the fluctuations as arising from spontane-
of hydrodynamic fluctuations. Following Landau and Lif- o5 fiyctuations of the stress tensor and the heat current. This
shitz[14,19 we limit ourselves to small fluctuations around g implemented in the usual wdg4], by adding, to thein-

a given flow, solution to Eqs7)—(9), so that a linearization  ¢4jzedequations for the fluctuations of the momentum and
in the fluctuations is possible. In keeping with our assUmpPgnergy densities, terms proportional to the divergence of a
tion that the independent variables are the mass density, Vesnqom stress tensor and to the divergence of a random heat
locity and temperature of the fluid, we define the fluctuations,rrent respectively.
as linear deviations from the flow, that is, To be precise, we add to the equation for the fluctuation
of the momentum density,
p(r,t)=po(r,t)+ p(r,t), (20

and analogous expressions fdr,t) andT(r,t). The func- f dr'W(|r—r'[;rq)
tions po(r,t), vo(r,t) and Ty(r,t) constitute a given flow,

solution to the full nonlinear integral equatio$0)—(12), _

with the expressiongl5) and (18). Now, using expressions Where the tensarlR(r,r’,t) is a Gaussian random stochastic
such as Eq(20), we can linearize the integral equations in function, symmetric under interchangercéndr’, with zero

the fluctuations; for instance, the continuity equation for themean and with its second moment obeying the usual
fluctuations[cf. Eq. (10)] becomes fluctuation-dissipation relations,

—i:::,l)-ﬁR(r,r’,t), (22)

<H§,g(r1:"2,t)Hf}y(rs:r4:t’)>:2k{[T0(r1) 70(r2) +To(r2) 70(r1)1(8ay 0,1 64165,)
+K[To(r1) (Zo(r2) = 5 70(r2)+ To(r2)(Lo(r1) = 5 10(r1))18,58,,} 6
X (=t ){8(ry1—r3)8(ro—ra) +8(ry—rs) 8(ro—ra)}. (23

In the same fashion, we add to the equation for the flucin Sec. 11l we shall also comment upon how one can include
tuation of the energy density, the fluctuations within a particlelike simulation.

f dr’W(|r—r’|;ro) (|r:r:|) -JR(r,r’,t), (24) Ill. A DISCRETIZED INTEGRAL HYDRODYNAMICS
r=r The integral formulation presented in Sec. Il is simply an
approximate representation of the usual hydrodynamic laws.
'Its usefulness resides on whether its solution may be easier to
find than that of the actual equations or on its amenability for
approximations. In this regard, we recall the approximate
R R , SPH and DPD schemes, where a particlelike simulation,
(Ja(r1,r2,0)J5(r3,r4,t") similar to a molecular dynamics simulation, represents the
_ 2 2 ) flow of a continuum fluid. In this section we present a par-
= 2K(To(ra) xo(r) +To(r2) xo(re)) dapd(t—t') ticular discretization of the integral equations of Sec. Il that
X[S(r1—r3)8(rp—rg)+8(r1—r4)8(r,—r3)]. may be used as the basis for a simulation in terms of “fluid
particles.”
(25)

whereJR(r,r’,t) is a Gaussian random stochastic function
symmetric under interchange ofandr’, with zero mean
and with second moment

We recall that the quantitiedp(r,t), dj(r,t), etc., depend A. A particlelike scheme

on those of the underlying flowp(r,t), jo(r,t), etc., but not The basic idea is first to divide space in cells of finite size
the other way around. That is, one first solves for the latteAV and, then, to define the field variables for each cell. We
and then one finds the fluctuations. It is understood that theall r; the position vector of théth cell, and the following
flow is stable; that is, one should always hagpy,<1, etc.  list summarizes the variables for such a cell:
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p(r,t)  AV—m;(t) mass, the conservation equations look as follows. The conservation
of mass is

j(r,t)AV—p;(t) momentum,

H(rHAV=pi(t) 26 s ) .

e(r,t)AV—¢(t) energy, a5 (rij )€ - [myvj+myvi]. (34)

v(r,t)AV—v;(t) velocity. The conservation of momentum is

Now the kernels of pressure and viscous stress become dp{*

— = NVePl(p*B+ph aB(p.. N
“potentials” of force between théth andjth cells, while the at 211 Wi e (P + pivr) + 8*7(Py + Pii)
heat density current is now a “current” of energy between
such cells: —(mfiP+ i), (35)
P(r;r';t)AV—"P;;(t) pressure potential, The conservation of energy is

I*A(r;r';t)  AV—m{(t)  stress potential,
(27)

Jg(r;r sHAV— Ji(t)  heat current. — (i Vi T V) + (T + T} (36)

JE€; ~
(?_tI:; W(rij)eij{(eivj+ejvi)+(Pijvi+Pjivj)

The integrals are then discretized by summing over cells By construction, the total mass, total momentum, and to-
directly and not over labels that localize the cell in a Cartetal energy are conserved. This can be seen by summing the
sian grid; that is, above expressions over1,2,... ,N.

N So far, the equations are quite general, and one needs
constitutive relations for the kernels of pressure, viscous
J dr—>§i: Av, (28) stress, and heat current. For instance, the viscous stress ten-
sor linear in the velocity gradients may be found by dis-
where we have assumed there Breells in the total volume. ~ cretizing Eq.(16),
This discretization implies a careful choice of the discretized
version of the weight functiokV(|r—r’|). That is, we can- af_ _ e, BB @2 saBay v
not simply change by r; andr’ by r; in the functional form il n'zk: W ILEVIT Bvic— 50 €]
of W, since the equations for the momehEy. (2)] would
not be correct. This is due to the fact that those results make — {5 WIT ) €ehor (37)
use of the spherical symmetry @. Instead, we propose the K

following discretization that gives rise to the correct mo-
ments: while the heat current may be found from EG8)

! _ )= 2 1/ - ~
W(Ir =tV AV—W(r))=4mt (AV)YAW(r;)).  (29) j”_:Ki; WIT 05Tk (39)
where we have defined;=|r;—r;|. This form also takes
into account thatW is always part of an integrand. As a One should keep in mind that in order to close the equations

particular example, using as a representation afianction,  one still needs the equations of state for the pres®ire
=P(m;,T;) and the internal energy per particle;

1
5(r)=|imroﬁome‘”f0, (30)

1
W= 2

(AV)PB[ /g
W) =—=2—|2|;
0

i]

e—l'ij /I'O,

= U(mi ,T])
_ equations. The interesting addition n¢#5,7] is to assume
yields, forW(r), that the positions; of the cells become the positions of
e "o (31) assumption, since making the fluid particles move should be
done in a Lagrangian formulation of the fluid dynamics
and, correspondingly, for\(r;;), of particle, however, since, as we can see from the above
equations, the particles not only change their momenta but
+ ; " S
1 energy in addition to their kinetic one. Nevertheless, one
may justify this by arguing that one is actually looking at

Up to here there has been simply a discretization of the
3 ) particles that are allowetb move This is certainly a bold
lo I'o
o) (7]
r r
rather than in an Eulerian one. The present is a different type
(32) also have variable mass and carry with them their internal
which shows that, in discretized form, all the moments butevery instant of time to a state of the fluid not on a grid but

the zeroth are well defined. rather on a “fluidized grid”; the motion law of; is used as
With the above reformulation, and defining an updating of the state of the fluid on such a grid. In any
case one can assess the validity of such an assumation
éij _(ri_rj) ' 33) posteriori as we mentioned in Sec. I, successful simulations

B |ri—r; of actual flows with schemes like the present one have been
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reported; see Ref§6, 8—13. Although the choice of the law  whereAX#(t), AY{#(t) andAZ{(t), symmetric inij, rep-
of motion is arbitrary, it seems “natural” to consider the rate resent independent random increme(\éienner processes
of change of the position of the cell as the velocity of the[17]) with zero mean and correlations

fluid at that point:
(AXEPOAXT( )y = (87 8P + 527 5PV — 5 5°B 57")

dri(t) ¢ 39
qr - vi(b. (39 X (81 Ojm™T Sim&j1) Syt
We point out that this choice is not unique; see R8f.for AYEBOAYY (1)) = 8BS (81 St S 8:1) Sher
other forms used in SPH simulations. AYFOAYREDY (o0 Oim ™ Om) O (44)

In principle the above scheme is complete and closed.
However, for an actual implementation of a simulation based
on it there are further questions to resolve, such as boundary ~ (AZ{(H)AZ (1)) = 6*A( 8 Sjm+ Simj1) S »
conditions in terms of the particles and the discretization of
time. Since in the literature there is already a host of proceErom a practical point of view, any good commercial pseu-
dures[9,19] both for dealing with boundary conditions be- dorandom number generator suffices for these increments.
tween particles and solid frontiers and for the time discreti-The important aspect we want to stress is that, in contrast to
zation, we shall only discuss the latter because of itghe continuum versiohiEgs. (23) and (25)], here the tem-
relevance in the inclusion of hydrodynamic fluctuations. ~ Perature, viscosities, and thermal conductivity that appear in
A simple algorithm to simulate the dynamics consists of aEds.(42) and(43) are evaluated at the current values of the
two-step propagation in tm'[g] First’ there is a “collision” full fluctuating quantities and not at the values of the vari-
step in which one finds the values wf , p; ande; at time ~ ables of the underlying flow. Since it is assumed that the
t+ At from the knowledge of all the variables at timaising ~ fluctuations are always small and do not make the flow un-
Egs. (34)—(36), with stable, this is a minor approximation. Moreover, as men-
tioned above, if the flow does become unstable by adding the
random viscous tensor and heat current, that may imply, bar-

IAI(D) AL+ AD— A ring numerical inaccuracies, that either the flow is indeed

at At (40 unstable or that the method itself does not faithfully describe

the flow.
This is then followed by a “propagation” step in which the It should be clearly understood that the particlelike repre-
positionsr,(t+ At) are computed using sentation of a continuum fluid flow depends on two different

approximations; first, one approximates the true differential
laws by integral expressions with a finite widtly of the
ri(t+At)~r;(t) +Atv;(t+At). (41)  weight function; and second, the integrals are discretized.
These approximations pose constraints on the length scales
This combination is more accurate than if both steps weref the fluid. On the one hand, the density of point particles
done with Eq.(40) [16]. This algorithm, however, is also must be such that the mean particle separatith){’ is
useful to include the fluctuations as part of the evolution andmaller tharr in order to have a good approximation of the
not as ama posterioricalculation, thus being helpful in de- integrals. On the other hand, a typical hydrodynamical
termining the stability of the flow. This is an important point length, call it\, must be larger thar itself in order to have
since the purpose of the simulations is to solve the equations good representation of the gradients in terms of the inte-
by an actual propagation in time of the flogAn analytical  grals[i.e., an independence of the parametgrsee Eq(6)].
solution need not be done in this way; for instance, if theThat is, one should always have
equations are linearized one may solve them using an inte-
gral transform techniqueThus one can include in the equa- 13
tions for the momentum and the enefdggs.(35) and(36)], (AV)TE<ro=<). (45)

discretized versions of the random viscous temﬁn and  This way, the limitr ,— 0 implies not only the equality of the
random heat currenﬂﬁ, both symmetric inij. Since their integral and differential forms of the conservation laws, but
second moments must obey discretized versions of thealso the continuum limit itself.

fluctuation-dissipation expressiofi83) and (25), these ten-

sors may be added as B. SPH and DPD as special cases
The purpose of this section is not to make a revision of
wﬁ“ﬁ(t)= (2kTi(t)ni(t)+2ij(t)ni(t))l’zAXi‘}ﬁ(t) SPH and DPD schemes, nor compare them with the present
V2x vaB one, but rather, to show that they may be viewed as special
+(KTi(D) () KT 5i(1)) AV, cases of a more general scheme that reduces to the macro-

(42)  scopic conservation laws of fluids. As we have seen, the
discretized conservation equatio(®4)—(36) are very gen-
eral. One still needs to provide constitutive relations for the

jﬁ“(t)=(kTi(t)Kj(t)+ij(t)Ki(t))l’zAZi‘}(t) pressure, viscous tensor, and heat current and, as long as

(43)  ij-symmetrized forms are provided, the conservation laws
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are guaranteed. The particular expressions given in Sebowever, one cannot independently identify the correspond-
Il A, such as Eqs(37) and (38) are just examples. But be- ing viscosity coefficients. This is to be contrasted with the
fore we present other forms used, such as those of DPD arekpression of the tensor given by E§7), where there is an
SPH, we want to mention some aspects of the time derivandependeng priori identification of the viscosities.
tives used. In the DPD simulations there is an additional ingredient.
In the schemes used in SPH and DPD, the time derivaThat is, the pressure term is taken to be stochastic. Within
tives of the properties of the particles have been interpretethe present scheme this may be interpreted as including hy-
as already including the convective contribution. In the dis-drodynamic fluctuations with white noise, with particular

cretized version, this is equivalent to identifying temperature and viscosity as given by E&p). In this regard
we differ from the interpretation of DPD equations given in
dm  om, R Refs.[11] and[12]. In that interpretation, the equations of
ar 7—2;, W(rij)e;j-vim;, (46) DPD are taken as the “microscopic” dynamics of the par-

ticles of a fluid, from which the macroscopic laws are to be
extracted, much in the spirit of Langevin and Boltzmann
dp® ap? ~ . equations. Within that interpretation they argued that the ran-
T 7—2 WArije;-vip;, (47 dom part should be modified in order to account for the
! correct fluctuation-dissipation relation of Langevin-like
equations. According to the present theory we can say that
de; Je - DPD is only a particular choice of the viscous terms, and that
T 2,: W) &ij - Vi€ . (48 the random contributions already refer to hydrodynamic fluc-
tuations. Moreover, if one wishes to find the corresponding
This is a subtle point: One the one hand, one could argue th&tokker-Planck equations to the discretized hydrodynamic
thetotal derivative follows the motion of the fluid particle, as €quationg34)—(36) one can follow the theory of Reff15] of
in a Lagrangian formulation. However, the right-hand side oftonlinear hydrodynamic fluctuations.
the corresponding conservation lay@#)—(36) should be ac-
cordingly transformed. Since the transformation to a La-
grangian formulation is not done in SPH and DPD, one may IV. FINAL REMARKS
still say that those formulations correspond to not too large |n this paper we have presented an integral form of the
Reynolds numbers where the convective contributions ofonservation laws of a macroscopic classical fluid in terms of
Egs. (46)-(48) may be neglected. It may be interesting to an interpolant for the gradient of a given function of space.
include those terms explicitly in a simulation. This form is amenable to a discretization of space, and may
With the above identification of the time derivatives, We pe interpreted in terms of the dynamics of “fluid partidesl”
can now see a closer resemblance to the equations of SPFh complete this discretized dynamics one must provide the
and DPD. For the purpose of exemplifying the relationshipjaw of motion of the position of the particles; one may pre-
between the present treatment and those of SPH and SPEyribe that the field velocity equals the rate of change of the
we shall only discuss the equation for the momentum. Usingosition of the particle. Within this scheme one can easily
the mass conservation equation and the fact that find the corresponding Navier-Stokes equations of viscous
=mv{", the equation for the momentum can be written as flow and the Fourier law of heat conduction. Moreover, hy-
drodynamic fluctuations can also be readily taken into ac-
count.
=Z W(rij)eﬁ{éaﬁ(ﬂj +'Pji)—(7rﬁ’8+ wﬁﬁ)}_ We have argued that numerical simulations currently
] used, known as smoothed particle hydrodynam(i§®H
(49) [4,5] or smoothed particle applied dynam(&], and dissipa-
In Refs.[4,5,8, SPH is formulated with forms for the tive .part.icle Qynamic$DPD) [7],'and Whic.h are based on a
particlelike simulation of a continuum fluid, may be seen as
pressure such as X :
special cases of the general formalism presented here. In that
way, on the one hand, one guarantees that the simulations
DoAP = Pj (50) have a correct continuum limit, and, on the other hand, that
el mf‘mJ5 m?m?’ there appears a clear route of how to represent, in the particle
dynamics, known effects of macroscopic fluids. For instance,
with a andb constants and with a given equation of state forwith the present theory one can see how to include thermal

dv{
M dtr

P; in terms ofm; [18]. effects, absent in DPD simulations.
The viscous stress tensor of SPH and DPD may be gen- Finally, we want to stress the potential uses of this type of
erally written scheme. It does seem that a complication in any simulation
of fluids is the discretization of space with its concomitant
Wﬁﬁ+ WﬁBZA(rij)eﬁ(Uiﬁ_UjB)+ B(rij)eﬁ(vi“—vf‘) difficulties of boundary conditions; this is more important if

(51) one is interested in rheological fluids, such as suspensions.
That is, in order to simulate a simple flow a discretizéfi

with appropriate choices ok andB [7,9-12. It is interest-  ferential scheme(e.qg., finite differencesmay appear to be

ing to note that this form can give rise, in the continuumbetter than a discretized integral version; this is because the

limit r,—0, to terms proportional t&v2v and V(V-v); latter makes use of the weight function, which in turn must
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resemble & function, and therefore it appears that one needs
more “particles” than points in a grif6]; cf. Eq.(45). How-
ever, having paid this price, there is a host of “tricks” and  J.M.R. is thankful for useful conversations with J. Dufty
techniques, borrowed from standard molecular dynamicsand M. Ernst. V.R.-R. thanks the the Universitat of Barce-
that can be used to simulate moving boundaries and solithna for their hospitality during the completion of this work.
objects, e.g., Lee and Edwards shear boundaflE, @ We acknowledge support from CONACYT, Mexico,
“freezing” a certain number of particles to simulate a rigid DGAPA-UNAM, and DGICYT of the Spanish Government
body[7], and so on. under Grant No. PB96-0881.
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